

Deep Hole Definition

- D	- 1
10:1	T
20:1	u
40:1	
100:1	

Depth to diameter ratio

Drilling Process

HOLE DEPTH : DIAMETER (D:d)

5:1 Common twist drills

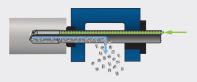
- 10:1 High performance twist drills with through-tool coolant
- 20:1 Special deep hole drilling tools with through-tool coolant
- 100.1Deep hole drilling tools on dedicated deep hole drilling machines
- 200:1 Gundrilling tools on high performance gundrilling machines 400:1 Extreme drilling range, proprietary processes and

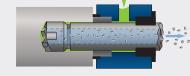
 - equipment required

1. ROTATING TOOL - Typically used for non-symmetrical components, or off-center hole requirements

2. ROTATING WORKPIECE - Used for round parts with a deep on-center hole, and allows for a reduction in drill drift.

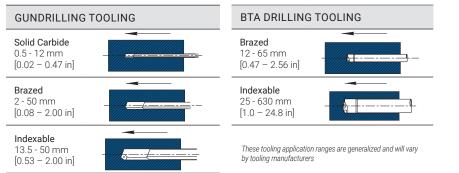
3. COUNTER-ROTATING TOOL AND WORKPIECE - Used for round parts with a deep on-center hole, provides the best hole straightness and concentricity.


BTA


Deep Hole Drilling Methods

GUNDRILL Internal Coolant Delivery External Chip Exhaust

Tool and workpiece rotation



Deep hole drilling processes work by using special tools and setups to deliver high pressure coolant, evacuate chips cleanly, and achieve depth-to-diameter holes into metal beyond what a common CNC machine can reach. The two most common deep hole drilling systems are gundrilling and BTA drilling.

UNISIG will provide application advice after reviewing part drawings, tolerance requirements and production volume. Feed and speed recommendations are made by UNISIG based on reputable tooling manufacturer's technical data and our deep hole drilling experience.

Tooling for Deep Hole Drilling

Eiector

EJECTOR DRILLING - LESS COMMON, TWO-TUBE SYSTEM

· Coolant is introduced via the space between the inner and outer tubes Chips are discharged through the inside diameter of the inner tube and exhausted through an adapter mounted to the front of the machining spindle

Definitions and Standards

BTA Drill Tube Size and Solid Drill Diameter Standards

Tube OD (mm)	Ref. Size	Drille Diame			Drilled Hole Diameter (inch)
11	794	12.6	-	13.6	0.496 - 0.535
12	795	13.6	-	14.6	0.536 - 0.575
13	796	14.6	-	15.6	0.576 - 0.614
14	797	15.6	-	16.7	0.615 - 0.657
15	798	16.7	-	17.7	0.658 - 0.696
16	799	17.7	-	18.9	0.697 - 0.744
17	800	18.9	-	20.0	0.745 - 0.787
18	801	20.0	-	21.8	0.788 - 0.858
20	802	21.8	-	24.1	0.859 - 0.948
22	803	24.1	-	26.4	0.949 - 1.039
24	804	26.4	-	28.7	1.040 - 1.129
26	805	28.7	-	31.0	1.130 - 1.220
28	806	31.0	-	33.3	1.221 - 1.311
30 33	807 808	33.3 36.2	-	36.2 39.6	1.312 - 1.425 1.426 - 1.559
36	809	39.6	-	43.0	1.420 - 1.539
39	810	43.0	_	43.0	1.693 - 1.850
43	811	47.0	_	51.7	1.851 - 2.035
47	812	51.7	_	56.2	2.036 - 2.212
51	813	56.2	_	65.0	2.213 - 2.559
56	813E	60.6	-	65.0	2.386 - 2.559
56	814	65.0	-	67.0	2.559 - 2.637
62	815	67.0	-	73.0	2.638 - 2.873
68	816	73.0	-	80.0	2.874 - 3.149
75	817	80.0	-	87.0	3.150 - 3.424
82	818	87.0	-	100.0	3.425 - 3.936
94	819	100.0	-	112.0	3.937 - 4.408
106	820	112.0	-	124.0	4.409 - 4.881
118	821	124.0	-	136.0	4.882 - 5.353
130	822	136.0	-	148.0	5.354 - 5.826
142	823		-		5.827 - 6.298
154	824	160.0		171.9	6.299 - 6.767
166	825	172.0		183.9	6.772 - 7.240
178	826		-	195.9	7.244 - 7.712 7.717 - 8.185
190 202	827 828	196.0 208.0		207.9 219.9	7.717 - 8.185 8.189 - 8.657
202	829	208.0		219.9	8.661 - 9.130
226	830		_	243.9	9.134 - 9.602
238	831		_	255.9	9.606 - 10.075
250	832	256.0		267.9	10.079 - 10.547
262	833		-	279.9	10.551 - 11.020
274	834	280.0	-	291.9	11.024 - 11.492
286	835	292.0	-	303.9	11.496 - 11.964
298	836	304.0	-	315.9	11.968 - 12.436
310	837	316.0	-	327.9	12.440 - 12.909

Applications and Tolerances

PROCESS	CONFIGURATION	HOLE	HOLE STRAIGHTNESS		SURFACE FINISH		APPLICATION		
PROCESS	CONFIGURATION	SIZE	(inch/foot)	(mm/meter)	µ-inch Ra	µ-m Ra	APPLICATION	OBJECTIVE	
	Tool rotate- Work rotate	IT6-IT11	0.001-0.004	0.08-0.33			Solid drilling	Large stock removal.	
Gundrilling	Tool stationary- Work rotate	(heavily influenced	0.002-0.006 0.16-0.5 8-248		48 0.2-6.3	Counterboring / Reaming	Large stock removal; may be used for finishing operations		
	Tool rotate- Work stationary	by work material) 0.012 1.00		Trepanning	Large stock removal at lower horsepower; useable core-slug is left				
BTA	Tool rotate – Work rotate		0.001-0.010	0.08-0.254			Pull counterboring	Straighten the hole or achieve uniform wall thickness	
Solid drilling Trepanning	Tool stationary – Work rotate	IT8-IT10	0.003-0.015	0.25-0.381	60-125	1.5-3.2	Skiving	Create a geometrically true round hole	
Counterboring	Tool rotate – Work stationary		0.025	0.635			Roller burnishing	Create a mirror-surface finish or impart desired surface qualities	
Pull boring	Tool rotate- Work rotate	IT7-IT9	0.001	0.08	32-125	1.5-3.2	Skive-burnishing	Combines skiving & burnishing applications to increase productivity	
Skive-burnishing	Tool rotate- Work stationary	IT8-IT9	as received	as received	< 8.0	< 0.2	Honing	Eliminate the residual stress layer left by machining process and control the hole diameter.	

The tooling application ranges above are generalized and will vary by tooling manufacturers. The tolerances provided are estimates, commonly quoted by tool manufacturers for applications with depth to diameter ratio up to 100:1 and under optimal conditions. As with any machining process, achieved tolerances depend on several factors; process parameters, workpiece condition or dimensions, tool geometry, desired trade-offs between productivity and tool life, cutting oil, etc. Individual results may vary. Diameter ranges beyond the nominal stated may be possible with UNISIG machines. Visit www.unisig.com for more information.

DIAMET	ER RANGE	IT6	IT7	IT8	IT9	IT10	IT11		R RANGE	IT6	IT7	IT8	IT9	IT10	IT11
DIAIVIET	EK KANGE	110	117	110	119	1110		DIAMETE	RANGE	110	117	110	119	1110	
over	incl	tolerance - millimeters					over	incl	tolerance - inches						
0	3	0.006	0.010	0.014	0.025	0.040	0.060	0	0.1181	0.0002	0.0004	0.0006	0.0010	0.0016	0.0024
3	6	0.008	0.012	0.018	0.030	0.048	0.075	0.1181	0.2362	0.0003	0.0005	0.0007	0.0012	0.0019	0.0030
6	10	0.009	0.015	0.022	0.036	0.058	0.090	0.2362	0.3937	0.0004	0.0006	0.0009	0.0014	0.0023	0.0035
10	18	0.011	0.018	0.027	0.043	0.070	0.110	0.3937	0.7087	0.0004	0.0007	0.0011	0.0017	0.0028	0.0043
18	30	0.013	0.021	0.033	0.052	0.084	0.130	0.7087	1.1811	0.0005	0.0008	0.0013	0.0020	0.0033	0.0051
30	50	0.016	0.025	0.039	0.062	0.100	0.160	1.1811	1.9685	0.0006	0.0010	0.0015	0.0024	0.0039	0.0063
50	80	0.019	0.030	0.046	0.074	0.120	0.190	1.9685	3.1496	0.0007	0.0012	0.0018	0.0029	0.0047	0.0075
80	120	0.022	0.035	0.054	0.087	0.140	0.220	3.1496	4.7244	0.0009	0.0014	0.0021	0.0034	0.0055	0.0087
120	180	0.025	0.040	0.063	0.100	0.160	0.250	4.7244	7.0866	0.0010	0.0016	0.0025	0.0039	0.0063	0.0098
180	250	0.029	0.046	0.072	0.115	0.185	0.290	7.0866	9.8425	0.0011	0.0018	0.0028	0.0045	0.0073	0.0114
250	315	0.032	0.052	0.081	0.130	0.210	0.320	9.8425	12.4016	0.0013	0.0020	0.0032	0.0051	0.0083	0.0126
315	400	0.036	0.057	0.089	0.140	0.230	0.360	12.4016	15.7480	0.0014	0.0022	0.0035	0.0055	0.0091	0.0142
400	500	0.040	0.063	0.097	0.155	0.250	0.400	15.7480	19.6850	0.0016	0.0025	0.0038	0.0061	0.0098	0.0157

Secondary Machining and Finishing Tools / Operations

PUSH- COUNTERBORING / REAMING 20 - 630 mm [0.79 - 24.8 in] External coolant	Counterboring enlarges an existing hole that is drilled or cast Push configuration tools pilot off a finished bore They can also be designed to pilot off the pre-bore for stringent concentricity requirements
PULL BORING 20 - 630 mm [0.79 – 24.8 in] External coolant	 Enlarges the existing bore as it is pulled through the workpiece Boring bar is in tension rather than compression, providing better control over hole straightness Can be used to straighten a hole with specialized tools
TREPANNING 20 - 500 mm [0.79 - 20.0 in] External coolant	 Process performed on blank material without a pre-drilled hole. The tool leaves a solid core in the middle of the hole Consumes less power than solid drilling the same hole diameter Trepanning in blind hole applications may not be practical due to the difficulty in removing the core
BOTTOM FORMING 20 - 500 mm [0.79 - 20.0 in] External coolant	 Form tooling operation for finishing off the base of a hole Tools are guided with wear pads along the finished hole diameter, and have very specific designs depending on customer needs Radius, steps, and flat bottom forms are common
SKIVING AND ROLLER BURNISHING 20 - 500 mm [0.79 - 20.0 in] External coolant	A skiving tool is used to finish the surface when close diameter and roundness tolerances are required Rapid stock removal; high penetration rates and low radial DOC Burnishing cold works the workpiece surface; one or more rollers pressed against the surface plasticize the material's top layer
BOTTLE BORING Special application External coolant	Also known as internal profiling or chamber boring The boring tool extends and retracts to produce the intended contour inside the workpiece. The internal profile is then larger than the entry and exit CNC programming is used to achieve desired profiles
TUBE FINISHING LARGE DIAMETER COUNTERBORE 300 - 1200 mm [12.0 - 4 8.0 in] Internal coolant	 Requires specially configured counter boring tools Think of it as a push counter boring operation with internal coolant supply, and BTA type indexable tooling Extreme diameters need extreme amounts of coolant flow

Deep Hole Drilling Process Parameters

Cutting Speed (M/min or SFM) Chip Load (mm/rev or in/rev)	Determined by material type, hardness, condition, tool type, substrate, and coating. Use tool manufacturer or UNISIG engineering recommendations.				
Spindle Speed (rev/min)	Calculated by machine or operator using cutting speed and tool diameter				
M/min RPM SFM RPM FPM M/min	 M/min x 318 / DIAMETER (mm) RPM x 0.262 x DIAMETER (inches) FPM x 3.820 / DIAMETER (inches) M/min x 3.281 				
Feed Rate (mm/min or in/min)	Calculated by machine or operator using spindle speed and chip load				
mm/min in/min mm/min in/min	= in/rev x RPM = in/min x 25.4				
Cutting Fluid Flow Rate (L/min or gpm)	The amount of cutting fluid that passes through the tool, and carries chips and heat from the process. Parameter values change by tooling type.				
Approximate starting values	3.7 - 4.5 L/min per mm of tool diameter 25 - 30 gal/min per inch of tool diameter				
Cutting Fluid Pressure (bar or PSI)	Pressure is developed due to the restriction of flow through process. Pressure is typically monitored for safety and tool condition and programmed for a maximum value. Coolant flow is of primary importance.				
	Updated Feb 2024				

www.unisig.com